
 

 

 
Abstract 

 
This paper presents a global minimization framework 

for estimating analytical BRDF model parameters using 
the techniques of convex programming and branch and 
bound. Traditional local minimization suffers from local 
minima and requires a large number of initial conditions 
and supervision for successful results especially when a 
model is highly complex and nonlinear. We consider the 
Cook-Torrance model, a parametric model with the 
Gaussian-like Beckmann distributions for specular 
reflectances. Instead of optimizing the multiple parameters 
simultaneously, we search over all possible surface 
roughness values based on a branch-and-bound algorithm, 
and reduce the estimation problem to convex minimization 
with known fixed surface roughness. Our algorithm 
guarantees globally optimal solutions. Experiments have 
been carried out for isotropic surfaces to validate the 
method using the extensive high-precision measurements 
from the MERL BRDF database.* 
 

1. Introduction 
Accurate descriptions of surface reflection have been a 

topic of research in computer vision and computer graphics. 
The Bidirectional Reflectance Distribution Function 
BRDF) is a four-dimensional function that defines how 
light is reflected at a surface, and a number of BRDFs have 
been developed to model real-world material surfaces [18]. 

Analytical models have been popular for their compact 
representations, and some of those are developed for 
physical plausibility [1] [4] [5] [10] [16] [19] [23] [24]. 
Since these models generally do not account for all the 
reflectance properties of all kinds of materials, approaches 
to representing reflectances on basis functions have 
recently been developed to describe reflectances from a 
wider range of material surfaces [2] [20] [21]. Despite all 
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their comprehensiveness, however, the number of bases 
needs to be kept large to account for viewing and lighting 
variability and to maintain high frequency details. Once the 
analytical model is appropriately selected for a specific 
type of surface material and its parameters are accurately 
estimated, the model describes the reflection in a highly 
compact way. 

For estimating a BRDF, reflections are measured under 
various viewing and illumination angles, and data is usually 
fitted to an analytical model using conventional 
(constrained) least-squares nonlinear minimization [13] 
[17] [24]. Highly nonlinear BRDFs that include multiple 
Gaussian-like functions can have a huge number of local 
minima. In traditional nonlinear optimization, the quality of 
the fit is dependent on a good initial guess. To make sure 
the optimization converges to a local minimum yielding a 
satisfactory result or hopefully the global minimum, the 
fitting quality of the result is visually/manually inspected 
and if necessary the optimization is restarted from a 
different set of initial guesses. However, even this 
supervised optimization does not necessarily guarantee the 
globally minimum solution. 

While global optimization has recently been an area of 
active research in geometric vision [9] [11] [12], no explicit 
effort has been made in photometric vision. To our 
knowledge, no previous work has given globally optimal 
solutions to the BRDF estimation problems under 
photometrically meaningful L  or L2 cost functions. Our 
work focuses on the globally optimal parameter estimation 
of the Cook-Torrance model with multiple specular lobes 
using a set of photometric measurements with known 
surface orientations and viewing/lighting directions [5].  
The Cook-Torrance model has been developed based on 
the geometrical optics and considered one of the most 
physically plausible models. Nonlinearity arises from the 
surface roughness parameter in the Beckmann distribution 
function, and the model becomes quite complex when 
multiple specular lobes are considered.  

Our idea is based on the observation that the estimation 
problem becomes convex when the surface roughness 
parameter is known, in which case the global optimum can 
be found easily. Therefore, searching for the best 
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roughness is the key procedure for the minimization. We 
employ a branch-and-bound algorithm for an efficient 
search over the whole interval of the roughness. It 
recursively bisects the interval into small sub-intervals, and 
for each of them it solves a convex feasibility problem 
which tests whether or not it may contain a better roughness 
inside. The algorithm is efficient because infeasible 
sub-intervals are discarded from the search space and not 
considered any more. Furthermore, our algorithm 
guarantees the global optimality. In this paper, we provide a 
mathematical analysis to derive the convex feasibility 
problem.  

Recent advances in data acquisition technique and 
apparatus have resulted in several high quality BRDF 
databases available for research and academic use [6] [7] 
[8] [14] [15]. To validate our algorithm, we carried out 
experiments using the isotropic material data in the MERL 
database, a set of extensive, densely sampled, and 
high-precision HDR measurements [14] [15]. To 
demonstrate the limitations of the conventional approach, 
we also performed experiments with a local optimization 
algorithm and the results are compared with those with the 
presented method. 

The rest of this paper is organized as follows. Section 2 
describes the BRDF model that our work is based on. 
Section 3 states the problems for us to solve and Section 4 
describes our brand and bound algorithm.  Experimental 
results and discussions are presented in Section 5 and 6, 
respectively, and we conclude in Section 7.  

2. BRDF Model 
   The Cook-Torrance is given as: 
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   The diffuse reflectance is assumed to be Lambertian and 
 is the diffuse albedo. The Fresnel coefficient F is 
dependent on the light incident angle and the refractive 
index of the material which may vary along the wavelength 
.  The unit vectors N, L and V denote the surface normal, 
the illumination direction and the viewing direction, 
respectively. (See Figure 1 for the local geometry of 
reflection.)  

   The geometrical attenuation factor G accounts for the 
shadowing and masking of microfacets and given as: 
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where the unit vector H is the bisector of  L and V. The 
facet slope distribution function D represents the fraction of 
the facets that are oriented in the direction H. Various facet 

slope distribution functions have been considered by many 
investigators [5] [23] [24]. For rough surfaces, Cook and 
Torrance used the Beckmann distribution function [3] [5]:   
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where  is the angle between N and H. The parameter  is 
the root mean square of the microfacets and represents the 
surface roughness. Some surfaces have two or more scales 
of roughness, and can be modeled by using more than one 
distribution functions. In such cases, D is a weighted sum 
of the distribution functions, i.e., 
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p

pDwD     

where j is the surface roughness of the jth distribution and 
wj is the weight of the jth distribution. The sum of the 
weights is 1 [5]. 

It should be noted that the distribution function D was 
developed for rough surfaces. When it is used for a smooth 
surface, its physical plausibility may diminish to some 
degree and the model serves merely as an empirical model. 
For our investigation presented in this paper, however, we 
use the same distribution function for all the surfaces in the 
MERL database as did in [17] where the one-lobe and 
two-lobe Cook-Torrance models show good performance 
compared to others. 

As mentioned above, the Fresnel factor F  [0.1] is a 
complex function of the refractive index and light incident 
angle. Since it is almost constant for the incidence up to 
about 70 degrees, however, we excluded the BRDF data 
beyond 60 degrees of light incidence in our experiments 
and F is considered as a constant.  

3. Problem Statement 
   We are interested in the classic problem of estimating 
parameters of an analytical BRDF model, in particular of 
the Cook-Torrance model, with known object geometry 
and photometric calibration. The main problem is given as 
follows. 

Figure 1: Local geometry of surface reflection
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Problem 1 (BRDF estimation) Given an object of known 
shape, we want to estimate the parameters , F, and  of 
the Cook-Torrance model from a set of image-based 
photometric measurements with known viewing and 
illumination directions.     

With known object shape, we have N, and with 
photometric calibration, we know V, L, H and . The 
parameters we like to estimate are , F and The 
parametric reprojection equation of the one-lobe 
Cook-Torrance model for the ith measurement is given as: 
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where Is is the incident illumination intensity at the surface, 
and 
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For a distant point light source, Is is constant but unknown. 
Thus, we actually estimate  and F up to scale, i.e.: 

., sIkkFykx  where  

Now Problem 1 is to estimate x, y,  with known ai s, bi s, 
and measured Ii  s for i =1, 2,…, N. 

The residual function for a measurement Ii is defined as: 
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We use the following vector notations for a set of errors, 
measurements and reprojections:  
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Note that Î

 

is represented as a function of among other 
parameters. This will be used later in developing our 
branch-and-bound algorithm. 

Given a set of measurements Ii s, i =1, …, N, we want to 
find the best solution that minimizes the L2 norm of 
residuals: 
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The difficulty of finding the optimal solution results from 
the nonlinearity caused by the exponential term. However, 
one may easily observe that if we know , then the 
estimation becomes a convex optimization problem and we 
can find the global solution to this reduced problem. Let us 
suppose that we know 0. Then, the estimation of x and 
y becomes a second-order cone programming problem: 

Problem 2 (Restricted problem for BRDF estimation) 
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Here the number of variables is three including the 
auxiliary variable t and the number of constraints is three 
(one second-order constraint and two linear constraints). 
Note that this is a convex optimization problem that can 
easily be solved using a convex solver such as SeDuMi [22]. 
If this convex problem is solved for every value of the 
roughness, then the global solution can be obtained. It is of 
course impossible in practice to deal with an infinite 
number of surface roughness values. Our solution to 
overcome this impossibility is to efficiently search over the 
space using a branch-and-bound technique and take 
advantage of the convexity when is known. Below we 
outline our branch-and-bound strategy.  

   Starting with any  that can be found by any method at 
all, our algorithm computes the L2 residual min, and takes it 
as the initially best residual. Then, the interval of domain 
is divided up into two sub-intervals. On each of the 
sub-intervals we determine whether there is a solution to 
the restricted optimization problem having cost less than 
min. This question is formulated as a feasibility problem. If 
the answer is negative on a sub-interval, it is excluded from 
further consideration. Otherwise, the algorithm evaluates 
the cost function for some value inside the sub-interval, 
and if this is less than min, it updates min, x and y. Then this 
feasible sub-interval is bisected into two smaller regions. 
This procedure of feasibility check and bisection is 
repeated until the length of sub-domains is short enough.  

  The coarse-to-fine sub-division and discarding infeasible 
sub-intervals result in an efficient search over the 
spaceNext section presents a mathematical derivation 
of the feasibility problem which is the core of our BRDF 
estimation algorithm based on the branch-and-bound 
technique.  



 

 

4. Branch-and-Bound BRDF estimation 

1. An appropriate value 0 is determined and then the other 
parameters are computed. Then we have min, the residual 
corresponding to 0: 

 
20min    e . 

2. The domain S of  is subdivided into several 
sub-intervals Sj s in such a way that S = j Sj and Si  Sj = 
for i ≠ j, except at the boundary. This is an initialization step. 
In the following steps, feasible sub-domains are bisected. 

Any sub-interval S is represented by its center position 
  and the half length h of the interval. The lower bound 
and upper bound of the interval are denoted by land u, 
respectively: 

  hhS ulul   ,,  

3. A convex optimization problem, called the feasibility 
problem, is solved to check whether the interval Sj contains 
a better solution than the current estimate. 

4. Discard all the infeasible sub-intervals. 

5. The restricted convex optimization problem (Equation 2) 
is solved for each of the feasible sub-intervals, and the best 
estimate is updated.  

6. The feasible sub-intervals are bisected; Go to step 3. 

We stop this branch-and-bound iteration when the half 
length h of the sub-intervals is small enough. As we show 
below, the feasibility of a sub-domain is dependent on two 
factors: the current best residual and the length of the 
domain 2h. 

Now let us develop the feasibility problem. Plainly, it is 
cast as follows:  

Problem 3 Do there exist x, y and S such that  

min2
e . 

Unfortunately, it is not easy to give an answer to this 
question. Instead, we want to consider an alternative but 
equivalent problem [9]:   

Problem 4  Do there exist x and y such that 

 S  min2
e  ,                           (3) 

where S is a bound due to the variation of  in S. 

Now let us derive a form of the bound S. First, we consider 
the case when the sub-interval S contains a roughness that 
yields a smaller residual. Let opt be one of the roughness 
values in S. Then, the following inequalities hold: 
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The first inequality is due to the triangle inequality. Let us 
examine the second term on the right hand side as a 
function of opt: 
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We may find an upper bound of this norm function by 
replacing opt by one of the two boundary points of S due to 
the characteristic of this function. By finding maximizers 
i,(either i,u or  i,l) of this function, we obtain an 
inequality: 

  ,ÎI  y min  

where  

.expexp

2

1
2

222
,*

2
,*

  
1

  
1



















































 

i

i
i

i

i

i
i

c
b

c
b




 

It should be noted that the function 
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 monotonically increases for  tan0  and 

monotonically decreases for  tan . Thus we make sure 

that no sub-interval S is set up across tan .   

We recast the feasibility problem (3) as follows: Find  x 
and y subject to: 
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and if there is no such solution, report it. 

Note that this is a second-order cone problem whose 
parametric formulation is given as: 

Problem 5 (Feasibility problem) 
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Given a solution s of this problem, we have the following 
two cases: 

a) If s   0, then the problem is feasible. The 
sub-interval S contains a better (or at least 
equivalent) solution inside. 

b) If s > 0, then the problem is infeasible. The 
sub-interval S can be excluded for further 
consideration. 

When the problem is found to be feasible, we solve the 
Problem 2 and check whether   yields a smaller L2 error 
norm. If it does, then the total residual min and the optimal 
solution (  yx ˆ,ˆ ) are updated. 

Our branch-and-bound algorithm can be easily 
extended to the multiple-lobe Cook-Torrance model. For 
the two-lobe model, the residual function for the i-th 
measurement is given as: 
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We have again a restricted convex second-order cone 
programming problem if we know the two roughness 
parameters 1 and 2. The branch-and-bound search is 
performed now over the two dimensional (1, 2) space. 
From the triangle inequality for the residual function, we 
can derive the following two-lobe second-order cone 
programming problem:  
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 5. Experimental Results 
To validate our approach, we have carried out 

experiments on the MERL isotropic BRDF database. It 
contains reflections from a set of 100 objects that includes 
near diffuse objects (e.g. fabrics and paints), glossy objects 
(e.g. paints, metals and wood), mirror-like objects (e.g., 
metals and plastics). For a single common , we estimated 
the three sets of x and y parameters in each color channel 
independently. Therefore, the solutions are obtained for the 
seven parameters: xr, xg, xb, yr, yg, yb and . 

One  Specular Lobe  

For the one-specular-lobe model, we performed branch 
and bound (BnB) on over the range of 10-12 ~6.0, and the 
shortest sub-interval after the final bisection was preset to 
2-11. This limits the number of bisectioning to 10.  Many of 
the materials in the dataset can be described reasonably 
well with the one-specular-lobe model. Figure 2 shows a 
plot of RMS reprojection errors from the estimated 
one-specular-lobe model in logarithmic scale for all the 100 
materials. Each of the rgb channels is normalized by its 
maximum value before their RMS reprojection errors are 
computed. The materials are sorted in ascending order of 
the RMS errors. We used the data with light incidence of up 
to 60 degrees to keep the Fresnel factor constant. For each 
object, a total of 84 sampled data are used (21 lighting 
direction for 4 views). The error curve shows the similar 
pattern to that shown in [17]. However, the different 
normalization factors do not allow us to compare the 
numerical values directly.  
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Figure 2 :  The normalized RMS reprojection errors (logarithmic scale) from the estimated Cook-Torrance model for the MERL isotropic 
BRDF dataset of 100 materials. 



 

 

Figure 3 shows the measurements and reprojections for 
the gold paint which has the 33st smallest RMS error. The 
parameters are estimated using the set of 21 data with the 
viewing direction (, ) = (0, 0) and the illumination angles 
that range from (0, 0) to ( /3, ). The circles denote the 
measurements and the asterisks show the estimated values 
in rgb. The notations for data plots for Figures 3, 4, 5, 6 and 
7 are shown in Table 1. 

O r channel measured * r channel estimated 

O g channel measured * g channel estimated

O b channel measured * b channel estimated

Table 1:  Notations for data plots for Figures 3 ~ 7. 

Two  Specular Lobes  

Many material surfaces cannot be well represented with 
only one specular lobe [17] [5] [13]. The BRDF estimation 
with the one-specular-lobe model using the data from the 
two-layer gold shows noticeable errors as can be seen in 
Figure 4 (logarithmic scale). The two-layer gold exhibits 
the 34st smallest RMS error (Figure 2). We have applied our 
two-lobe BnB algorithm that searches the two dimensional 
(1, 2) space to the two-layer gold data, and the results are 
shown in Figure 5. The reprojection errors are substantially 
reduced.   

We conducted experiments on the red plastic that 
exhibits the largest RMS errors. Figure 6 shows the 
measurements and reprojections estimated from the single 
lobe model for the four different views (linear scale). On 
the other hand, the results shown in Figure 7 are obtained 
using the two- specular-lobe BnB algorithm.  

To confirm global optimality, we compared the results 
from the BnB algorithm with those from a two dimensional 
brute force search. For both 1 and 2, the smallest 
sampling interval is set to 2-11 and a brute force search is 

Figure 3: One-specular-lobe estimation: measurements and 
reprojections for the gold paint. 
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Figure 4: One-specular-lobe estimation: measurements and
reprojections for the two-layer gold. 

Figure 5: Two-specular-lobe estimation: measurements and 
reprojections for the two-layer gold. 

Figure 6: One-specular-lobe estimation: measurements and 
reprojections for the red plastic. 

Figure 7: Two-specular-lobe estimation: measurements and 
reprojections for the red plastic. 
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performed over the range of 10-12 ~6.0. The results are 
identical to those from the BnB algorithm. 

To compare the model fitting errors, the difference 
between the reprojection errors EBnB-1 (one-specular-lobe 
model) and EBnB-2 (two-specular-lobe model) are 
normalized with respect to EBnB-2, i.e.: 

2

21
21     









BnB

BnBBnB
BnB E

EE
d , 

and the differences are shown for the 100 materials in 
Figure 8. The residuals are the same for 47 materials and 
the fitting quality with the two-specular-model improves 
for 53 materials.  

Local Optimization versus BnB (Two Specular Lobes) 

For comparison, we carried out experiments on the 
same data set with conventional local optimization based 
on the Levenberg-Marquardt (L-M) algorithm. For each of 
the materials, the residuals EBnB-2 from our BnB algorithm 
and EL-M from the L-M method are computed, and their 
difference is normalized with respect to EBnB-2 as follows: 

2

2    








BnB

BnBML
BnBML E

EE
d , 

To compute EL-M, we applied the L-M optimization a 
hundred times with different initial guesses for each of the 
materials, and selected the smallest residual as EL-M. We 
found that data from some materials often fit the 
one-specular-lobe model better that the two-specular-lobe  
model with the local minimization approach, hence the 
residual from better fitting is taken as EL-M, i.e.: 

  ,,min 21    MLMLML EEE  

where EL-M-1 and EL-M-2 denote the residuals from the one- 
and two-specular-lobe models, respectively. The local 
minimization was supervised such that the initial 
conditions are randomly chosen but unreasonably large or 
small values are excluded. Figure 9 shows the normalized 

residual differences. Even with the supervision, the L-M 
method with 100 trials found global optima only for 51 out 
of 100 materials.  

We increased the number of initial guesses to 5000 to 
improve the results from the local minimization, and Figure 
10 shows the normalized residual differences. Compared to 
the results from the one-specular-lobe model, the fitting 
quality degrades for 20 among 100 materials and improves 
for 52 materials with the two-specular-lobe model. It is the 
same for 28 materials with the one- and two-specular-lobe 
models. Even with 5000 trials, the L-M algorithm reaches 
the global optima only for 60 materials. We were not able 
to compare the computation time fairly since we 
implemented the L-M algorithm using a numerical tool 
based on C/C++ [25] and the BnB algorithm in Matlab [22]. 
However, the L-M method with 5000 trials takes a 
substantially longer time than the BnB method without any 
guarantee of global optimality.   

6. Discussion 
A common practice of BRDF fitting with a 

conventional local minimization algorithm is to run the 
algorithm with a predetermined number of trials and an 
error bound. Even with elaborate supervision and a huge 
number of initial guess, however, it is not always possible 
to find globally optimal solutions to the problem of fitting a 
BRDF model with multiple specular lobes. The 
experimental results show that our unsupervised global 

material index

Figure 8 : Normalized differences between the residuals from the 
one-specular-lobe BnB and two-specular-lobe BnB algorithms. 
The materials are sorted in alphabetical order. 
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Figure 9: Normalized differences between the residuals from the 
two-specular-lobe L-M (100 trials) and BnB algorithms. The 
materials are sorted in alphabetical order. 
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Figure 10: Normalized differences between the residuals from the 
two-specular-lobe L-M (5000 trials) and BnB algorithms. The 
materials are sorted in alphabetical order. 



 

 

optimization guarantees global optimality even for a 
complex BRDF and thus eliminates uncertainty in BRDF 
estimation.  

In addition to the Cook-Torrance model, we have also 
developed a global method for the distribution function of 
the Torrance-Sparrow model [23]: 

 22    /exp cD , 

and conducted experiments. However, we have not found 
any meaningful difference between the two models in terms 
of fitting quality. For some materials, the 
Torrance-Sparrow model works slightly better. Perhaps the 
accuracy in data measurement is not high enough to 
account for the subtle difference in physical modeling.  

In our work, the L2 error norm is minimized by the 
second-order cone programming. The L error norm can 
also be minimized yet with more computationally efficient 
linear programming. We have developed a method of 
feasibility check for the L cost function and performed 
experiments. However, the results are rather similar to 
those presented in the previous section for the same 
database. Our future work includes the development of 
global optimization algorithms based on the L1 cost 
function for the robust estimation of BRDF from data with 
outliers. We are also interested in developing global 
optimization methods for other models than the 
Cook-Torrance and Torrance-Sparrow models, for instance, 
the Ashikhmin-Shirly, Lafortune, He,  and  Ward models 
[1][13][10][24].  

7. Conclusion 
We have developed a global optimization method for 

the estimation of the one- and two-lobe Cook-Torrance 
model parameters. To the best of our knowledge, this is 
the first approach that claims global optimality in the 
estimation of BRDF with multiple specular lobes. For the 
highly nonlinear BRDF function, we divide the estimation 
problem into the branch-and-bound search for the surface 
roughness parameters and the convex programming for 
others. Our method does not require any supervision, and 
we have demonstrated that it performs noticeably better 
than a carefully supervised traditional optimization 
method for the isotropic data in the MERL database. 
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